Members can access premium features
Shore Power Quickscan
Make a business case for a shore power refit on board your ship including a techno-economic feasibility report
Decarbonizer
Explore decarbonization pathways for your ship by comparing technologies, CAPEX, OPEX and more
Overview of Shore Power Sockets and Plugs - IEC/IEEE 80005
IEC/IEEE 80005 is the main standard for shore power. This standard categorically divides shore power plugs and sockets into low voltage shore connection systems (LVSC < 1 MVA) and high voltage shore connection systems (HVSC > 1 MVA). LVSC systems are governed by IEC/IEEE 80005-3 for operability and IEC 60309-5 for dimensions. HVSC systems are governed by IEC/IEEE 80005-1 for operability and IEC 62613-2 for dimensions.
Ship-Based Carbon Capture Techno-Economic Guide
Get techno-economic guidance for the use of SBCC onboard your vessel, including operational impact, logistics and of course the costs for implementation.
The State of Methanol as Marine Fuel 2023
This blog is a state of the use of methanol as marine fuel as “quick” reference for shipowners. Key points include costs for retrofitting the ship and engine, range between € 250-€650 per kW, elaboration on IGF code for low flashpoint fuels and technical considerations for conversion and working with methanol. Availability for methanol is good, but bunkering for large vessels mostly non-existent. Methanol price per kilogram is historically lower than regular MGO.
Marine Exhaust Gas Heat Recovery Systems
Marine exhaust gas heat recovery systems can be a useful measure to reduce fuel consumption by 5% for typical cases, with up to 15% for favourable engine and ship characteristics. As a rule of thumb, heat exchangers become more efficient and cost-effective the larger your engine becomes. Conversion of heat to electricity is recommended for diesel-electric vessels, as well as the use of engine cooling water instead of exhaust gas heat.
Overview of Ports’ Sustainable & Shore Power Ambitions
Most ports have the ambition to become carbon neutral by 2050. This typically excludes vessel emissions and focusses on Scope 1/2 port operations only. A significant portion of ports around the world have signed shore power declarations to ‘deploy shore-side electricity by 2028 where possible’, including all large North Sea ports, Los Angeles, Montreal and all large Japanese ports. Cruise and container vessels are the primary target for most ports’ regulations and EU will start taxing vessels via EU ETS from next year onwards.
Specific Fuel Consumption [g/kWh] for Marine Engines
Specific Fuel Consumption (SFC) of marine engines ranges between 155 and 200 g/kWh on optimal load settings, mostly dependent on engine speed (low, medium, high). Specific fuel consumption increases dramatically for approach at low power (30% Pmax) and especially at idle (7% Pmax).
What is the carbon footprint of steel?
Weighted average carbon footprint of steel is 1.85* tons CO2 to 1 tonne steel produced according to Mckinsey and the World Steel Association.